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Abstract. The two sided Lanczos algorithm is known to suffer from serious

breakdowns. These occur when the associated moment matrix does not permit

triangular factorization. We modify the algorithm slightly so that it

corresponds to using a 2 x 2 "pivot" in triangular factorization whenever

a 1 x 1 pivot would be dangerous. The incidence of breakdown is greatly

reduced. The price paid is that the tridiagonal matrix produced by the

algorithm now has bumps whenever a 2 x 2 pivot is used.
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1. THE LANCZOS ALGORITHM AND ITS BREAKDOWN

The most popular way to obtain all the eigenvalues of a nonsymmetric

n x n matrix B is to use the QR algorithm which is readily available

in most computing centers. As the order n increases above 100 the QR

algorithm becomes less and less attractive, especially if only a few of the

eigenvalues are wanted. This is where the Lanczos algorithm comes into the

picture. It does not alter B at all but constructs a tridiagonal matrix

J gradually by adding a row and column at each step. After several steps

some of the eigenvalues 9i of J will be close to some eigenvalues 'k

of B and by the nth step, if nothing goes wrong, ei = Xi' i = 1,...,n.

This description is correct in the context of exact arithmetic. Unfortunately

things can go wrong, even in the absence of rounding errors. For the

relation between these troubles and orthogonal polynomials see [2].

In order to discuss these troubles we must give some details about

the algorithm. Let J be the k x k tridiagonal produced at step k

of the algorithm. There are infinitely many tridiagonal matrices similar

to B and Jn is one of them. Thus for some matrix Qn= (ql ... ,q) we

have

Qn'IBQn = Jn (1)

It simplifies the exposition considerably to introduce a redundant symbol

and write Pn* instead of Qn - The superscript * indicates conjugate

transpose.

Let Pn (Pl,. ... Pn) and replace (1) by two separate relations

P n *Qn I , (2)

Pn*BQ J n (3)

.............
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We mention in passing that when B* = B = A then we can arrange

that P = Q The difficulty we are going to describe cannot occurn n

when Pn = Qn"

By equating elements on each side of BQn = QnJn and P*nB = JnP*n

in the natural increasing order we shall see that B, p1  and ql

essentially determine all the other elements of Pn' Qn' and Jn" On

writing

CLI Y2

~1 1
Jn - 2 2 Y3

L ~2 : j
we find

pl *Bql al '

and

BqI  qlcl + q2 2 , PI*B = cpl* + Y2P2 *

Hence q2  and P2* are, respectively, multiples of "residual" vectors

rl = Bql - q,1o1  l p *Bl - al

Furthermore, since p2*q2 = 1 by (2), we have

s1 r1 = Y2P2*22= 22- '2
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If W2 0 and a2 is given any nonzero value then y2 ' q2, and P2*

are all determined uniquely. A good choice is 32 = vr 21

The general pattern emerges at the next step, on equating the second

columns on each side of BQn = QnJn and P* nB = JnP*n'

P2*Bq2 = '2'

Bq2 = qlY 2 + q2c2 + q3 3, P2*B = B2Pl* + '2P2* + y3P3*.

At this point we can compute the "residual" vectors

2 = Bq2 - qiY 2 - q2 2, s2* P2*B - 2pl* 2

and

3 = s 2*r2 = y3 a3

If 3 0 and 3 is given any nonzero value then Y3, q3, and P3*

are all determined uniquely. And so it goes on until some w vanishes.

This is the Lanczos algorithm. It must terminate at the nth step with

W n+l = 0 but it may stop sooner.

Premature termination at say step j (< n) can occur in two ways:

(I) either r. Z 0 or s. = 0* or both,3 3

or

(II) r. i 0, sj* t 0*, but wj+l = 0.

Ali
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In the 1950's when the Lanczos algorithm was regarded as a way to

compute Jn Case I was regarded as a mild nuisance. If r. = 0 then

any nonzero vector orthogonal to pl .... ,pj can be chosen as qj+l"

Similarly sj = 0 gives ample choice for Pj+l"

Today, regarding Lanczos as a way to find a few eigenvalues of large

B it seems better to stop at Case I in the knowledge that every eigenvalue

of J. is an eigenvalue of B. If more eigenvalues are wanted then it is3

best to start the Lanczos algorithm afresh with new, carefully chosen

starting vectors ql and pl

The real trouble, which cannot occur when B = B* = A, is Case II.

Wilkonson calls this a serious breakdown. There seems to be no choice but

to start again but no one has been able to suggest a practical way to

choose the new ql and Pl* so as to avoid another wasted run of the

algorithm. That is why the Lanczos method has not been used much when

B* B. In this article we propose a modification of the algorithm *lhich greatly

reduces the occurrence of Case II. The price paid for this convenience

is that J is not quite tridiagonal. There is a small bump (or bulge) in

the tridiagonal form to mark each occurrence (or near occurrence) of

Case II.

Example 1. (No breakdown)

B = diag(2,3,4), ql* W '(1 1,,), PI* T -(1,2,1).2 1 2

Step 1: CL 3, W '8 1, Y2  1

q2* 1(-1,0,1), P2* : (-1,0,1).

Step 2: 2= , : , 83 = 1, y3

q3* 221,-lI), P3* (
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Step 3: a3: 3, 04 .

J3 =  1 3 f

0 1 3

j!

2. THE TWO SIDED GRAM-SCHMIDT PROCESS.

The serious breakdown described above is not limited to the Lanczos

algorithm. It can occur in any attempt to use the familiar Gram-Schmidt

process to produce a biorthogonal (or biorthonormal) pair of sequences.

Our modification of Lanczos seems more natural in such a context.

Let F = (fl ..... n) and G = (gl...gn) be given real nonsingular

n by n matrices. In other words ffl .... f n} and {gl....gnf are each

a basis for the vector space dn of column n-vectors. We want to produce

a new pair of bases {ql,..... nI and {Pl .... pn} such that

Pn*Qn = Qn = diag( l ..... wn)

and, for each j =1...,n

span {ql ... qj} = span

span fp1,...,pj} = span {gl .... gj"

The Gram-Schmidt process dictates that at step j

q fJ i-2 qi(pi*fj/W),

Pj = gj - p (pi*gj/wi),
i=l "

=j :Pj*qj.
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All goes well until w. = 0 for some j. This can happen despite the

fact that F and G are nonsingular. .1

Example 2.

Step 1: q= f 1 , p gl ' 1  1.

Step 2: q2* (0,1,0), P2* = (-1,0,1), w 2 = 0.

One remedy for the case . 0 is quite natural. If p. € 0 then

recompute qj using fj+,, in place of fj. If this fails too then try

fj+2' and so on. If F is nonsingular there must be some i > 0 such

that fj+i will yield a nonzero value for _j

Here is a formal proof of tne last remarKs. Let q. aenote the

vector obtained by using fk instead of fj, i.e.,

j-1

qj(k) = - qi(Pi*fk/wi)"

Lena: If pj 0 and p.*q (k) = 0 for k = j,j+l,...,n then F is

singular.

Proof: By construction p.*q. = 0 for i < j.

Hence pj j span(fl,... fj-).

Thus 0 = pj.*qj(k) = Pj*fk - 0, for all k > j

Thus pj L span(f ..... fn).

Thus pj*F = 0 and F is singular. E

If the modification succeeds the first time then only one property of

Gram-Schmidt has been sacrificed, namely
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span (ql, .... ) span (fl .... f

'11

Moreover, if no further breakdown occurs then

span (ql,... qi ) = span (fl,...,fi) for i > j.

In many applications this price is well worth paying.

The Lanczos algorithm can be regarded as the two sided Gram-Schmidt

process applied to the columns of the special matrices

K = Kn (qlBqlB 2gl .... Bn-lg 1 ),

and

= (p1*,p* * 2, p*B n-iK* = K n -(P *PlB' Pl *B2 '' p B -

We will not establish this result but content ourselves with stating the

key observation, namely

Span (ql,q 2 ..... qj,Bqj) = Span (ql,...,qjB Jql)

The K matrices are called Krylov matrices and the pleasant fact is that

most of the work required for general Gram-Schmidt disappears in this case

because

Pi*Bqj = 0 for i < j-l

Thus the general formula

..............................
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qj Bq qi(pi*BJql/'.)i=1

collapses to

qj+l Bqj - j- qj 1
3 j-l

3. TRIANGULAR FACTORIZATION OF MOMENT MATRICES

Consider again the matrices K and K* defined in the previous section.

Note that the (i,j) element of K*K is (Pl*B i - )(BJ- 1 ql), so

K*K = M = M(pl,ql); mi+ 1 , j + l = pl*B i+Jql.

In order to use this observation we need some basic facts about the

Lanczos algorithm (see [4], [5], or [7]). If it does not breakdown it oro-

duces matrices P and Q such that

j+l
qj+l xj(B)ql/( fl Si0 ,

i=2

j+l

Pj+I= xj(B*)pl/( I" 'i)
i=2

where

×j+l(t) = (t - otj)Xj(t) - WjXj l(t),

and Xj is the characteristic polynomial of the tridiagonal matrix J..

In other words, for each j ,q. is a linear combination of the first j

columns of K while p. is the same linear combination of the columns

of K, up to scaling. This can be expressed compactly in matrix
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notation as

Q = KL-* -l'

P = 
(4)

Here

7= diag(l, 32 ,3233,

= diag(l,y 2,y2y3 .

and L is the unit lower triangular matrix such that L-* (L-)* has

the coefficients of Xj above the diagonal in the jth column.

Using (4) we can rewrite I = P*Q as

-1 -1-1
I : P*Q = (:-L-K*)(KL-* I )

i.e.

M = L:L* (5)

where

: = diag(lw 2 , 2W 3 ...... w" n)

This result is not new (see Householder, [2 J) but it is worth

emphasizing that the product W2"'"i is the ith pivot which arises in

performing Gaussian elimination on the moment matrix M associated with

B, q, and pI.

When B B* the moment matrix M need not be positive definite

and so triangular factorization need not be stable, even when M is

nonsingular.
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The best known remedy for instability is to use some form of row or

column interchange whenever an w. is too small. The standard "partial

pivoting" strategy is not available because a whole column of M is not

known in the middle of the Lanczos process. An alternative remedy is to

enlarge the notion of a "pivot" to include 2 x 2, or even larger sub-

matrices. This idea is discussed in Parlett and Bunch, 1971, [4]. It is

the basis of our method. Whenever a 2 x 2 pivot is used the tridiagonal

J bulges outwards temporarily.

In the context of the Lanczos process our remedy for a tiny j

requires us to compute qj+l at the same time as qj, and pj+l at the

same time as p. The formulas for these "Lanczos" vectors are somewhat

different from the standard ones. We call our modification the "look-ahead

Lanczos algorithm" because it computes at the current step some quantities

wnich are not usually needed until the next step in the standard Lanczos

process.

4. THE NEXT PIVOT

The decomposition M = L]L* is never found explicitly. In order to

make use of the idea of using a 2 x 2 pivot it is necessary to determine

the top left 2 x 2 submatrix of what would be the reduced matrix in the

trangular factorization of M. These three numbers can be determined from

the information available in the Lanczos process.

After i-l steps of the standard algorithm we have

r i  Bqi 1  - qi_l i_l - qi. 2 yi-1  =Xi-l(B)ql/(62...6i-0 1

si p*i-lB - Li-iP*i-l - i-lP*i-2 = Pl*Xil (B)/(Y2...Yi-l),

W i s i*ri

Instead of normalizing ri and s to get qi and pi* we can look

1 i~ 1



ahead not to the next Lanczos vectors qi+l'Pi+l* but to any vectors

ri+ , Si+1l* such that

the plane (ri ,r i+l ) = the plane (qi'qi+l),

the plane (s.*, *) = the plane (pi*,pi+.*)1h ln si ,i+l1 il

The simplest choice for ri+ l and si+l* is

ri Bri - qi

i+l - s - l

The coefficient wi ensures that ri+ l  is orthogonal to all the known

p's, namely pl....,pi-l, and also that si+ l  is orthogonal to ql,....qi-l"

Note that if we choose as qi any vector in the plane (ri ,ri+ l)

other than a multiple of ri then q. will be of the form

qi = i(B)ql1/(62 " ..

with 1 a monic polynomial of degree i instead of the usual Xil"

Moreover it will be possible to choose qi+l to be of the same form, using

a different ip but of the same degree i. This is a mild generalization

of the basic Lanczos algorithm. The degrees of the new Lanczos polynomials

are still nondecreasing but they do not always go up by one at each step.

Before making such a choice we compute

rllIIls i  II, and cos L (riIs) i /!Iri . s'i

Ig

,1



-12-

Al so

i+1 i+ +l' i i i+ l +iri

11r I ,s i+1*11, Cos .(ri+l" Si+l) = i+lJ/ -ri+ l  Si+l

Our choice of qi, etc. must be based on the matrix

W Wi = i
3i (i+l

It turns out that the top left 2 x 2 submatrix of the reduced matrix

in the associated triangular factorization of M is (w2""Wi-l)Wis

but no use will be made of this fact.

If both ji = 0 and Wi  is singular then more drastic measures are needed

to salvage the algorithm. We will not pursue this case here. When -'i = 0

then the standard Lanczos algorithm breaks down. Yet if Wi  is invertible

it is easy to choose suitable q's and p's so that the algorithm can

proceed.

The equations above can be condensed into block form.

(ri,ri B(qi_l,ri) - (qil,,ri)( 'l ) - qii+1 0 0 i-2("i-I 0),

(si s ) (pi *lSi),B _ ( I 00 )1 -( i -)

= (s.~sil*(ri~riij)def W ei)= (9i Wi+ 1 "

Various factorizations of W, yield various selections for new q's and

p's. These are discussed below. We write Z for wi+l and e for ai
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Let us drop the subscript i and write

W = VU.

1. LU factorization

0) U (W _82/c)

2/WL1o a

2. UL factorization

3. QR factorization

/L=LW -e\- T(_ ~ I 2-1 -r ( 2+e2 + 1/2
WU : , _e2 , ) , t

4. LU with interchange

V0) , U = 0 WW e

5. THE SMALLEST ANGLE

In order todeterminethe smallest angle between the planes (ri,ri+I)

and (sis+) it is best to orthonormalize the bases. Let the result be

(Fi 7i+l ) and (sii+l ) '

when the Gram-Schmidt process is used. The (matrix) angle between the two

planes, call it ¢, is defined, see [I!, by
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cos : ('g +1)*('FiTi )"

Let the Singular Value Decomposition of cos D be

cos : U E V*

where E = diag( , 'F2
) and l : -2 The appropriate definition of new

Lanczos vectors to ensure the smallest "(qi,pi) is

1/2

U,-1/2(Pi Pi+l) = ( i.-gi Ul

Comments. No. 1 corresponds to the standard Lanczos algorithm. No. 2

corresponds to simply swapping si* with si*B and ri with Bri  in the

Lanczos algorithm. One consequence is that the J matrix will bulge out

of tridiagonal form on both sides. No. 3 is always stable and keeps the

bulge on one side. The same advantage accrues from No. 4 and, as might

be expected, is somewhat simpler than No. 3.

We want to use No. 1 whenever this is a reasonable strategy but

when w is zero or very small it is vital to choose one of the other

procedures. We have tentatively chosen No. 4 on the grounds of simplicity.

The interesting question which we now address is when to use No. 4.

Initial success with No. 4 has not encouraged us to implement No. 5.

Criterion for Choosing a 2 x 2 Pivot

When Factorization No. 4 is chosen then
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(qiq.+ ) = (riri+l) -/1 + /

/ 1

(pipi~) =(s +1 'si) I -W./e3

to within scalar multiples. Note the interchange. Hence

cos L (qiPi) = cos L (risi+l )  r. Si+l

c s q = =qi________ ___ __ ___ _ _i+llr i+l-(Wi+l r i -11 i(ji Sl+l

Both these numbers are readily computable, without forming the new vectors,

provided that r i+l*r i  and si+l*S i are known. The choice between No. 1

and No. 4 reduces to a comparison of

= Icos £(ri,si)l and 2 = min {lfi4,IKi+l} .

If 01 < lOOE and 02 < lO0 then our algorithm stops and reports failure.

Otherwise, for a given bias factor we proceed as follows: if I > (bias

factor) 2 then use standard Lanczos else use Factorization No. 4. When

bias = 0 we recover the standard algorithm. Currently bias = 1.

Sometimes the test declares that a standard Lanczos step is safe. In

such cases l and 2 are not used and their computation may be regarded

as an overhead of 4 inner products. No matrix-vector products are "wasted".
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The 4 inner products arise as follows. We need

II S 1 t2 - (2)st*l 2=11 si12 - 2(=-)s*s + ( 1Isi  11)ei 1i I i~l si+I) 2

j+ 12 = Ikri+l - (w )ri 12 =llri+ll2- 2("--)riri+l + (w- 11 -r i  •)

We may regard the second and third terms on the right hand sides as the price

to be paid for knowing that a standard Lanczos step is safe. Observe that

r and si  are not computed.

Let us write R= (rir ) Si =(si's+l)

Then the look-ahead part of the algorithm comprises the computation of ri+ l ,

s+ and the unknown elements of SiR i , R*Ri , and S .s Before specifying

the algorithm we describe the bumpy tridiagonal matrix J

5. J , the Projection of B

The standard (biorthogonal) Lanczos algorithm produced a tridiagonal

matrix J by the end of step j . The look-ahead algorithm produced a block

tridiagonal matrix, also called J. , and written as

A1 r 2

B2 A2 r 3

j = B3 A3
B3 A3

B. A.

A ob
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The diagonal blocks are capital cL's and the subdiagonal blocks are capital
B's . The Ai are either 1 by 1 or 2 by 2 and the Bi and ri are

shaped conformably. For convenience in finding eigenvalues of J we have

forced each Bi to have one of the following four forms

where + stands for a positive quantity. It turns out that each Fi also

has rank one.

The left and right Lanczos vectors will be grouped by step and written

as P P P and Ql... , Q. where sometimes Q. is n by 1

and sometimes n by 2 . We collect the vectors together in Q = (Ql ..... Qj)
A *A^

and P = (Pl , .... P.) The matrix QjPj* is the projector matrix onto

the left and right Krylov subspaces and B's (oblique) projectio io ii

is defined by

A A A A A A

(Qp*) B (QjP*) = QJp*

Thus J. is the representation of this projection with respect to the bases

given by the rows of Pj* and the columns of Q

Please not that j is not the order of J.

6. The Look-ahead Lanczos Algorithm (called LAL hereafter)

We have chosen our notation to camouflage the complications caused by

the fact that each step may be either a single one or a double one. It turns

out that quantities are computed in a somewhat different order and way from

the standard two sided Lanczos algorithm (called LAN) and the reader may
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find the differences loom larger than the similarities. We have found it

helpful to think that step i takes certain residual matrices R. and S.

decides how to modify them, then turns them into the new Qi and Pi* and

finally computes part of the next set of residual matrices.

It is convenient to define the index Z by

X. 1+ order (Q

Thus by the end of step i we shall have

q= , if step i is single,

(qk qZ+l) , if step is double

Similarly for Pi* However, in all cases, Ri = (r,,r,+l) and S (s,s l

in describing LAL we call any computation involving n scalar multi-

plications or divisions a vector operation and abbreviate it as 1 v.op.

The algorithm requires that the user supply a subroutine (or subroutines)

for computing Bx and y*B from x and y* . The cost of these operations

will be problem dependent. We stress that this is the only way in which B

enters the process.

Step i of LAL

On hand are P * , Q (both are null when i x 1) , and zi which isOnhn r i-l ' i-l1

a multiple of column 1 of ri (zl = 1) , together with non null residual

vectors r , s* and scalars w : = s*r, Ir f , sz"
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1. Look-Ahead

(a) Complete R, = (r,,r 2+,) and St (s,,s,+1)*

r,+1 = Br - Qi_izi ,

S Tl* = s*BBpz -p

(2 matrix-vector products + 2 or 3 vector ops.)

(b) Compute needed inner products.

O s*r =s ,*r jS *r+r) r +S s£+r s,+,

z sZ+l z k+l2.Z+1, s 2s-1 , r1 2.,4-1 ,lI

(6 v. ops.)

(c) Compute cosines of important angles.

cos L(r.  . ) /lj r 9,11 ' sii , 2 = 0

if a = 0 then go to step 2, otherwise

I  W / , T2 = 2/ e ,

II r+ii r,,+l 2 2T(r*r +) 2 1 r 2)

ii = '(II l sill 2 2tl(s~s l) + [2 sz+l 2)

= cosL(r ,, s*,+1 = l rI "11 sl 1

2 = COSL(P 1-IS ) = (wT2 - e) / It r.+l1l " tt It

02 = min {lOP1l'I21}

(0 v.ops.)
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2. Test for failure: if 1 I 1< tol and 2 < tol then exit with error

message.

3. Select: if 1 i1 > (bias factor) • p2  then take a single step, otherwise

take a double step.

4. Single Double

(a) factor W : e) VU

= : I rill / A : diag ( ,s +i

y2 / : diag (f1 r.11l il Z+l 1 / )

(0 v. ops.) (0 v. ops.)

UA ( 2)

(b) form Qi and Pi

qZ = rg/at . Qi = RiU l ,

P* = s /z 9 Pt = v'1s' ,

(2 v. ops.) (6 v. ops.)
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Single Double

(c) complete i ' Bi

T1 1

r i = ziYz PIz=  i

Bi = az or (0 s) B ,= or

(0 v. ops.) (0 v. ops.)

(d) form new residuals

r+l r / , r+l= (BQi Qi_l ) (ri)

s+ 1 =s* /s* = p* B *Z +l 'Z , +2 zL " ZP-1

(2 v. ops.) = (0 1) (Pt B - BiPi_)

(2 matrix-vector products

+ 2 or 3 v. ops.)

(e) form Ai

=lit 1  t p* BqZ~l

(0 v. ops.) I lz.+l~l
W + )2 P Bq Z+ l

(1 v. op.)

F - . . .... ... .... .. . . . . - ... . -.. ... - -.--."------ --- ,.' . , 9i
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Single Double

(f) orthogonalize

r + -r+ qZ. Z; r + r+- QiAiO)

s * s * - p* $* * -(1 0) A.P*
Z+l Z+l ZZ ' Z+2 Z+2

(2 v. ops.) (4 v. ops.)

(g) inner products for next step

II r +I (fl r., +I 2 _ 2ar* r+l + 21 r.11 2)1/2/SZ compute

+{-({I s l 2 _ 2czzs.+ + Z s 2,112/ +

;I -+ / - t 2-+

z+2 S +2 r r+2

(0 v. ops.)

(3 v. ops.)

(h) reset z

end of step i of LAL.
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Total Cost of step i

Look-ahead: 2 matrix-vector prods + 9 v. ops.

Single step: 6 v. ops.

Double step: 2 matrix-vector prods + 16 v. ops.

For comparison we note that the standard two sided Lanczos algorithm which

keeps 11 p* fl :l qZ fl requires 2 matrix-vectors prods + 10 v. ops.

There are 3 different ways of advancing two steps

LAN . 4 matrix-vector p's + 20 v. ops.,

LAL, 1 double step : + 25 v. ops.,

LAL, 2 single steps: + 30 v. ops.

The bias factor in Step 3 is a programming device which permits LAL

to implement standard Lanczos (bias = 0) or a sequence of double steps

(bias = -). We do not claim that our setting (bias = 1) is optimal, but we

doubt that it is far off.

7. Numerical Examples

We give a few examples which contrast the performance of the standard

two sided Lanczos algorithm and our lookahead variant. They illustruate

the stabilizing effect of the new variant.

As mentioned earlier there are several aspects of the problem which we

have not yet addressed. The most important is the efficient computation of

eigenvalues of J . All our computations were done on the NOVA 840 of the

Remote Sensing Research Program at the University of California, Berkeley.
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This forced us to use fairly small examples and this permitted us to use

the QR programs from EISPACK to determine J's eigenvalues.

The Look-ahead algorithm reduces to the regular algorithm when the bias

factor = 0 . We kept the bias = 1 for all our examples.

Explanation of the Tables

Each table gives snapshots of a Lanczos run, exhibiting what we feel is

the essential information.

2 - the order of the J-matrix.

014 - cosines of angles between various candidates for p* and

qZ . See section 4 for precise definition.

p(J) - the spectral radius of J

The goal of our algorithm is to keep l from sudden plunges towards 0

We could have used iJi instead of P(J) , as an indication of "stability".

We fear the appearance of arbitrarily large "spurious" eigenvalues in J

We expect some of J's eigenvalues to stabilize, as Z increases, at certain

points in the complex plane. These points should be part of B's spectrum.

If a double step occurs in the Lookahead algorithm for a particular value

of 2 then Ol and ¢2 are not defined at Z + 1 and such places are indicated

by dashes.

Example I: 0 0 0 0 0 1
1 0 0 0 0 0

B 0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 1 0 0

-0 0 0 0 1 0

r I = I = [I,2,3,4,5,6]* no. of steps =6

L00100
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The eigenvalues of B are the sixth roots of unity. The size of the matrix

allows for the complete history.

TABLE I

Reg. Lanczos Look-ahead Lanczos

0I 1 2 P(J) tI 02 Q(J)

1 1.000 .1277 .8351 1.000 .1277 .8351

2 .1281 .0077 1.503 .1281 .0077 1.503

3 .0072 10- 6  1.012 .0072 10-6 1.012

4 10- 6  .0488 10+6  10- 6  .0488

5 10-7 10-7 -. 781

6 . ... 0068 .0o68

7 ----- 1.000

Coment:

Steps 1 - 3 of both Regular and Look-ahead Lanczos are identical. At step 4,

Regular Lanczos normalizes s4  and r4  by factors of l0 3 , producing elements

in J of size 106. Step 5 of Regular Lanczos is then aborted because the

vectors are now orthogonal to working precision.

The Look-ahead algorithm avoids the large element growth in J, by doing a

double step. The resulting J-matrix had eigenvalues identical to B to

working accuracy.

II. B is 12 x 12 block upper triangular with diagonal blocks shown below.

The upper elements b were randomly distributed in [-5, 5].

-,
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Bl =[95 2] , B2 = 2 -9] , B3 = 99, B4 = B5 = 98

B6 =:25-50] = 0-2 B [50 50]50 25 ,50 50

rI = sI = [1, ...

No. of steps taken 24.

TABLE II

Reg. Lanczos Look-ahead Lanczos

Z I ¢2 o(J) I2 c(J)

2 .2075 .6644 269.3 .2075 .6644

3 .2101 .2059 83.95 ---- 83.95

4 .7592 .4422 108.5 .7594 .4421 108.5

5 .4405 .4718 96.67 4403 .4717

6 .3438 .1787 98.45 ---- 98.45

7 .1304 .0914 98.40 .1304 .0914 98.40

8 .1217 .0641 98.57 .1217 0651 98.57

19 90012 .0389 1010 .1386 .0373 107.2

20 .0012 ,0389 1012  .2115 .2661 --

21 .0012 .0389 1013 ---- 164.5

22 .0012 .0389 1011 .1707 .0109 122.0

23 .0012 .0389 1014 0164 .0706 --

24 .0012 .0389 1018-... 164.5
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Comment on Example If.

B is fairly far from normal. After 24 steps, 7 of J's eigenvalues

had stabilized to between 3 and 7 decimal places using the Look-ahead

algorithm. What is surprising is that the regular Lanczos algorithm pro-

duced J's for which 6 eigenvalues had stabilized to 3 or more decimal

places despite elements in J as large as 1O1
8

III. B is a 15 by 15 upper triangular matrix with evenly spaced real

eigenvalues. The super diagonal elements were random in the range of

[-lO, 10]. The diagonal elements were

10j - 75 ,j : 1, .... ,7,

b = 08,

lOj -85,j=9.... , 15.

r= = (,,

i L
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TABLE III.

Reg. Lanczos Look-ahead Lanczos

PI (P2 P(J) 01 02 P(J)

7 .3205 .0580 64.87 .3905 .0580 64.87

8 .0646 .2167 154.2 .o646 02167

9 .0539 .0535 65.02 --- -- 65.02

10 .2843 .2336 65.00 .2839 .2353 65.00

11 .1651 .2007 65.00 .1659 .1990

12 .1516 .o447 65.00 --- --- 65.00

13 .0443 .1934 134,2 .1439 .1563

14 .0391 .0303 160.O ---. . 65.00

15 .0183 .0262 201.8 .3650 .1736 65.00

19 0438 ,0016 249.1 .2426 .4273

20 90070 , 0896 676.2 --- 00

21 °0072 0068 281.8 .1691 .2296

22 .0368 .0176 279.0 ----- 71.4o

23 .0269 .0306 290.6 .0704 .0284 65.00

30 .0303 .1304 332.6 .0518 .0114 111.7

Comment: The run was halted after 30 steps.

LAL: To 14 eigenvalues of B there were approximations good to between

4 and 7 decimals, including duplicates of the two extremes.

LAN: To 4 eigenvalues of B there were approximations good to between

4 and 7 decimals.
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IV. 100 x 100 diagonal matrix

diag (B)= (1,2,...,20,41,62,..., 440,481,522,....1260,1321,1382,...,

2480,2561,2642,..., 4100).

rl,s* random but unequal

TABLE IV.

Reg. Lanczos Look-ahead Lanczos

¢I 2 P(J) 1I 02 P(J)

4 .0633 .0037 3546. .0633 .0037 3546.

5 .0036 .0163 10 .0036 .0163

6 .0035 .0035 4648. 4669.

7 .0541 .0493 4489. .0521 .0460 4303.

8 .0536 .0187 4126. .0626 .o444 4219.

9 .0806 .0625 4866 .0519 .0027 4129.

10 .0770 .0582 104 .0029 .0187

11 .0823 .0782 104 -- 4082.

12 .0815 .0801 105  .0052 .0158

13 .0821 .0819 10- 4180.

14 .0819 .0818 105 .0478 .0367 4180.

15 .0820 .0820 106 .0425 .0204 4099.

16 .0820 .0820 1o6 .0225 .0091 4100.

17 .0820 .0820 10 .0156 .0042 4102.

18 .0820 .0820 107  .0089 .0098

19 .0820 .0820 1o8 - -ioo.

l
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Comment:

After 19 steps 4 eigenvalues of B were represented in J to 3 or more

decimal places. The standard Lanczos lost stability and no eigenvalues were

represented in its J

8. Conclusion

The Look-ahead algorithm is more complicated than the standard two-sided

Lanczos process. In return it seems to prevent the serious breakdown which

afflicts the standard program. However, much more testing is needed.

Other research topics which are relevant to a satisfactory solution of

the eigenvalue problem for large nonnormal matrices are:

(i) the use of reorthogonalization, or selective orthogonalization.

to maintain bi-orthogonality.

(ii) the use of the Hyman-Laguerre method for finding eigenvalues of J.

(iii) the use of the LR algorithm with interchanges for finding eigen-

values of J

(iv) incorporation of residual error bounds as termination criteria.

Saad studies alternative techniques which produce banded Hessenberg

J-matrices in [81 and he gives a theoretical treatment of the standard

two-sided Lanczos algorithm in [91.
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